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ABSTRACT 

The kinetic parameters determination of the crystallization of a disordered solid solution 
subjected to non-isothermal treatments is often considered using a large variety of physical 
models. Some authors propose the use of Johnson-Mehl-Avrami’s classic expression which 
corresponds to both isothermal and non-isothermal kinetic parameters, according to experi- 
mental results. 

In this paper we carry out research, starting from the generalized model most widely used 
by the non-isothermal problem, in which we prove the validity of Johnson-Mehl-Avrami’s 
expression. 

1. INTRODUCTION 

Amorphous solid solutions can be considered as a state chemically and 
topologically homogeneous from which it is possible to study the different 
crystalline phases, the morphologies and the distributions which can be 
obtained from controlled kinetics of crystallization (e.g. phase apparition 
and grain size). It is for this reason that it is interesting to study the kinetics 
of crystallization in non-isothermal processes. 

There is a substantial number of expressions which have been generated 
lately to determine the kinetic parameters which characterize such types of 
processes, and which we are going to summarize now. 

The essential equation used to analyse the kinetics of crystallization is 
based on the relation [l]: 

g = f(a)K[T(t)] 

where (Y is the fraction of crystallized volume, and f( CY) is the characteristic 
function of the reaction mechanism, taking the following values when 
nucleation and growing processes are considered [l]: 

f(a) = (1 - a)” (2) 
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where n is the order of the dimensionality of the reaction, which varies 
between 1 and 3. When the reaction is due to a diffusion process, the 
function becomes [l]: 

f{(Y) = & (3) 

The term K[ T( t)] in most of the proposed models is the well-known 
Arrhenius expression: 

KIT(t)] =A exp(-~/RT(~}~ (4) 

where A is the so-called pre-exponential term, E is the activation energy of 
the process, T the absolute temperature and R the ideal gas constant. 

Expression (4), as it takes non-isothermal conditions into account, be- 
comes a function as temperature is time dependent: T(t). In order to solve 
this difficulty, which, in general, represents the mathematical resolution of 
expressions of this type, it has been proposed to consider alternatively [2]: 

~[T(t)l =ATm exp(-E/RT) (5) 

where pn = integer or semi-integer values. This expression is a generalization 
of the temperature dependence of the rate constant. 

On the other hand, the fact that the crystallization rate is only important 
when the temperature is near the glass temperature, Tg, makes some authors 
propose the use of alternative expressions, such as [3,4]: 

K[T(b)] =A exp(-E/k’(T- T,)) (61 
which is called F&her’s law. 

The solution to equation (1) in isothermal conditions, by means of 
equations (2) and (4), takes us to the well-known Johnson-Mehl-Avrami 
expression [ 51: 

a=l-exp[-(kt)“] (7) 

With the same expressions, and for the non-isothermal treatment cases of 
linear type, T = To + /3t, De Bruijn et al. [6] have published a correct 
mathematical treatment, since there are a substantial number of papers 
[1,7,8] where the second term in the following expression is not taken into 
account : 

% = (%I,+ (%,E). u-v 
which it should be when the temperature dependence of the crystallized 
volume fraction is considered: LY = (Y( t, T). In the c~s~lization of the 
metallic glasses, it is assumed that the appearance of one or more crystalline 
phases is a temperature function, while the growth of these phases is a time 
function. 
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When equation (8) is taken into consideration, in equation (1) together 
with equations (2) and (31, with (4), (5) or (6), the expressions become fairly 
complicated when investigating approximate possible solutions, but the task 
can be made easier with the help of: 

(a) Special laboratory techniques, such as thermal analysis at constant 
rate [9], and the integration through small increments of (Y, t, I; etc. [lo]; 

(b) Neglecting the second term in equation (8), in which circumstance 
Criado [9] has shown that, by means of equations (2) and (4), and in certain 
conditions, one can obtain identical expressions as if the neglected term had 
been considered. 

On the other hand, if the expression which has to describe the kinetics of 
c~stall~ation does not correspond to a state function an expression which 
considers the fraction of the crystallized volume and its dependence on the 
thermal history at which the material has been subjected to is needed. Such 
an expression has been recently proposed [ll]: 

a(t, T) = 1 - exp[ -( Ki’(T-- T,)dt)‘] 

the values of the kinetic parameters obtained through expression (9) are in 
accordance with those obtained with the same material by other methods. 

In short, the kinetic parameters determination, as a consequence of the 
integration of equation (1) with the consideration of (2), (4) and (8) leads us 
to complicated expressions completely different to the classic Johnson- 
Mebl- Avrami expression (7). 

On the other hand, the analysis of a non-isothermal reaction from 
generalized expressions does not supply, decisively, the correct mechanism 
of the reaction, it is therefore required to establish the value of n from 
isothermal experiments: only after this is it possible to obtain the correct 
value of the activation energy, E, in the non-isothermal case [4]. 

~x103(S’) 
= -Fe75825 

710 720 730 7’o T(K) 

Fig. 1. The measured crystallization rate (+----- 0) is compared with that calculated from 
[6] (- - -), (81 (-e-) and isothermal expression (7) (A- A). (Adapted from [12].) 
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For these reasons, and as the agreement of the experimental results with 
the values calculated using the classical model is reasonable, some authors 
suggest that there is no reason for which any correction should have been 
made in the treatment of the data obtained for non-isotherms kinetics of 
crystallization [l&13] (Fig. 1). Thus, kinetic parameters (n, E) are obtained 
experimentally [14,X5]. Mathematically speaking, this means that the frac- 
tion of crystallized volume does not depend on the thermal history of the 
process at which the sample is subjected to. Thus, it is considered that a 
general correcting term does not exist in the classic expression of the kinetics 
of crystallization described by equation (7). 

The aim of this paper is to study the differential equation which describes 
the kinetics of crystallization in a generalized model in order to substantiate 
these observations. 

2. MATHEMATICAL APPROACH 

2.1. The model 

We consider a disordered solid solution in which the hypotheses for the 
kinetic crystallization mechanisms from the glass state are: 

(a) Nucleation is randomly distributed; 
(b) The growth rate of the new phase depends only on temperature but 

not on time. 
We consider that the increment rate of the crystallized volume is given by 

equation (I), and that the characteristic function of the reaction mechanism, 
f(a), is 

f(cu)=exp(-Ka!(T- T,)) 

from which it is easily seen that it is a generalization of equation (2) by 
letting n = 1 (except for the multiplicative constant K). Due to the short 
interval between the glass transition and the glass temperatures, T, and Tg, 
which is usual in metallic glasses, the independent characterization of the 
devitrification phenomenon used to be difficult for their distinction. For this 
reason we use the gIass transition temperature, Tg, only. 

Let us consider a process described by a linear evolution of temperature, 
T = TO + fit. Although this expression can be a simplification of the prob- 
lem, some of its results can be considered valuable for general situations, as 
any treatment can approximate to expressions of such types at different 
intervals of time (Fig. 2). 

Then, expression (1) is described by the differential equation: 

s =exp(-Ka(Ta+@- q))A exp(-E/R(T,+/3t- T,)) 
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T 

t 

Fig. 2. Linear approximation of a non-isothermal process. 

The initial condition which is needed to facilitate the solution of equation 
(11) is a(O) = 0. 

2.2. Asymptotic solutions 

Let us change 

s=T,+pt-T,; /3’=Kj3 

cY= (E/R)a; S= (R/E)s 

from where 

(12) 

g(t) = $s,p 
and 

g = exp( -a(s)s)A//l. exp( -E/R.r) 04 
with A, p’, E, R > 0. From which the differential equation is 

dZ 
ds = exp( -SOI(S))K exp( - l/S) 

with the following change: 

E’ A 
Kc--- 

R2 b 

First we notice that 
- 

*>o 
ds 

--. 
therefore (Y(S) IS a monotonous, increasing function. 

On the other hand, for S > 0: 

exp( - s(y( i)) K exp( - l/5) < K exp( - S(Y( i)) 

(13) 

(15) 

06) 



Therefore, if S > 0, the solutions of equation (15) will be bounded by the 
solutions to the equation: 

dG 
ds =Kexp(-E) 07) 

But, if the solution of equation (17) at the initial condition $0) = 0 applies 
only for S > 0 then either E < 1 for all S 2 0 or jr is such that Z( ii) = 1. If 
this is the case and due to the constancy of G, we have 

_ - 
K exp( -s(y) <K exp( --s)a 

then 

08) 

dE 
z = K exp(-S)Z (19) 

with an identical initial condition. Notice that the solution has a limit when 
S + cc (equation (19) is of separated variables). 

We consider y this limit, that is 
- - 

lima(s) = y (20) Sdrr 

We transform equation (15) in the following integral equation: 

J s 
aqdo = jmK exp(-aE(a))exp( -l/a)da 

I 
(21) 

from which 

G(i) = y - K 
/ 

O?exp( - uZ( u))exp( - l/u)du 
s 

(22) 

In order to obtain an asymptotic expression for large values of S we make 
the following approximations: 

E(u) =y 

exp( - l/u) = 1 (23) 

so, 

(r(S)=y-K oOexp(-uy)du=y-K 
J 

exp(-+) 

s 
y 

Returning to the old variables, we obtain the next solution for equation 
(11) with a(0) = 0: 

a(?, T) = $Y - $&eq(-vR/~(To+b-- T,)) (25) 

The Johnson-MehI-Avrami classic model, expression (7), is easily acces- 
sible from this expression, except for terms which can be fixed to unity by 
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Fig. 3. Temporal evolution of the solutions of equation (15) for different values of parameter 
p, numerically calculated by Runge-Kutta’s method of 7, 8 order. 

means of the parameters K, y and A: initial conditions required at the 
solution a(0) = 0 must be respected. 

2.3. Non asymptotic behaviour 

The question to be answered concerns the determination of temporal and 
temperature value ranges, in which the asymptotic solution can be consid- 
ered valid as a solution for equation (15). 

The model described by expression (7) is applicable to everywhere if, for 
small time values, and for T > Tg , the solutions quickly converge to their 
asymptotic behaviour. 

In order to carry out this study, numerical calculation methods should be 
used: analytical solutions to equations (15) do not exist. For this reason, a 
computer study, based on Runge-Kutta’s method of order 7, 8 [16], has 
been done, and which we will not describe here. 

The results obtained for different values of the defined parameter p = 
(E*A)/(R*p) are shown in Fig. 3. Notice that the solutions converge in each 
case to the asymptotic solution at approximately 10 s, and, because of this, 
our conclusion is that the asymptotic solution becomes the physical solution 
to the problem studied here. 

3. CONCLUSION 

The result from the asymptotic behaviour of the solutions of equation (1) 
is that the volume of the crystallized fraction is described in this situation by 
the Johnson-Mehl-Avrami classic expression (7), as has been proposed by 
different authors [14,15]. This solution can be adopted over the whole 
temporal range due to its quick asymptotic convergence. 



Important consequences concerning the correct determination of the 
kinetic parameters of the reactions which can take place in disordered 
solutions are deduced from this result. 

However, from a physical point of view, more accurate models can be 
investigated and, in fact, some works about this subject have been published, 
in relation to stochastic techniques [17], and, in the future, approximations 
from Monte-Carlo simulation techniques or from fractal objects [18] will 
allow us to reach a better understanding of the elemental physical processes 
of c~sta~~ation based on more realistic hypotheses of the structural trans- 
formations which take place in disordered solid solutions. 

Some of the crystallization phenomena, such as metallic glasses of eutectic 
composition, in two crystalline phases should be treated by means of 
non-lineal models, in which the possibility of an evolution of the two 
different kinetic processes should be considered at the same time [19]. 

At present, the Johnson-MehI-Avrami expression (7) should be consid- 
ered as a valid approximation of the macroscopic description of the kinetic 
crystallization for both isothermally and non-isothermally activated 
processes. 
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